Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Uk Lee* and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(W-O) = 0.008 \text{ Å}$ H-atom completeness 0% Disorder in main residue R factor = 0.039 wR factor = 0.098 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A novel protonated hexatungstoplatinate(IV), $Na_{5.5}[H_{2.5}PtW_6O_{24}]$ ·17H₂O

The novel protonated hemiundecasodium hemipentahydrogen hexatungstoplatinate(IV) heptadecahydrate, Na_{5.5}[H_{2.5}PtW₆O₂₄]·17H₂O, crystallizes in the triclinic system in space group $P\overline{1}$. The protonated O atoms were identified by considering three factors: inter-polyanion hydrogen bonds, elongation of W-O(H) bond distances, and bond angles of W-O(H)-W. The [H_{2.5}(PtW₆O₂₄)]^{5.5-} polyanion has no inversion symmetry, and it forms a dimer, *viz*. [H₅(PtW₆O₂₄)2]¹¹⁻, *via* five strong hydrogen bonds. Received 19 January 2004 Accepted 28 January 2004 Online 7 February 2004

Comment

Gradual protonation of the polyanion in Anderson-type heteropolyoxometalates (Anderson, 1937; Tsigdinos, 1978) has been found only in hexamolybdo- (Lee, 1994; Lee & Sasaki, 1994; Lee & Joo, 2000) and hexatungstoplatinate(IV) (Lee *et al.*, 1983; Lee, 2002) systems, when the general formula is $[PtM_6O_{24}]^{8-}$ (where M = Mo or W). The preparation of novel protonated hexatungstoplatinates is chemically interesting, and is important for investigating heteropolyoxometalate systems. We had attempted to confirm such protonation in the $[PtW_6O_{24}]^{8-}$ system. As a result, one type of hexatungstoplatinate(IV), *viz*. $[H_3PtW_6O_{24}]^{5-}$ (Lee *et al.*, 1983; Lee, 2002), was obtained previously. We report here the structure of the title compound, (I), which contains a novel

Figure 1

A view of the structure with displacement ellipsoids drawn at the 30% probability level, and showing the full coordination of the cations. H atoms are not shown. [Symmetry codes: (i) 2 - x, 2 - y, 1 - z; (ii) 1 + x, *y*, *z*; (iii) 2 - x, 2 - y, -z; (iv) 1 - x, 2 - y, -z; (v) x, 1 + y, *z*.]

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Inter-polyanion hydrogen bonds shown as a polyhedral model. [Symmetry code: (i) 1 - x, 1 - y, -z.]

protonated hexatungstoplatinate anion, viz. $[H_{2.5}Pt-W_6O_{24}]^{5.5-}$.

Fig. 1 shows the structure of (I) and the atom-labelling scheme of the polyanion. The polyanion consists of six independent [WO₆] and one [PtO₆] octahedra, sharing edges, and the polyanion has C_1 (1) symmetry. The O atoms were classified in the same way as previously (Lee *et al.*, 1984), *viz.* Oc (O1–O6), Ob (O7–O12), Ot (O13–O24), and Ow (O25–O41). The protonated O atoms, O(H) in the polyanion, were also identified in the same way as reported previously (Lee, 2002).

The protonation of the Oc atoms causes an increase in the W-Oc(H) bond lengths, a decrease in the W-Oc(H)-Wbond angles, and an increase in the W-Ob-W bond angles. The elongation of the W-Ocn(H) (n = 1, 3 and 5) bond lengths is about 0.16 Å compared with the non-protonated O atoms, as shown in Table 1. Along with the degree of protonation for different $[H_n PtMo_6O_{24}]^{(8-n)-}$ anions, the corresponding Mo-Oc(H) bonds are elongated, whereas the Pt-Oc(H) distances do not vary considerably in any protonated hexamolybdo- or hexatungstoplatinate(IV). A distinct bondlength elongation was not found for the W-Ob bonds. The $W \cdots W$ distance is also affected by the elongation of the W-Oc(H) bond distance. As a result, the distances W1···W2, W3···W4, and W5···W6, with a mean value of 3.369 Å, are longer than the W1 \cdots W6, W2 \cdots W3, and W4 \cdots W5 distances, with a mean value of 3.237 Å.

The bond angles W–Ocn–W (n = 1, 3, 5; mean value 93.5°) are smaller than those of the unprotonated W–Ocn–W groups (n = 2, 4, 6; mean value 97.3°). The W–Ob–W angles, which are a counterpart of Oc(H), *i.e.* W–Obn–W (n = 7, 9, 11; mean value 121.0°), are larger than the W–Obn–W angles (n = 8, 10, 12; mean value 112.3°). For comparison, in the unprotonated [PtW₆O₂₄]^{8–} polyanion (Lee *et al.*, 1984), the bond lengths of W–Ob and W–Oc are 1.97 (2) and 2.16 (2) Å, and the bond angles of W–Ob–W and W–Oc–W are 110.8 (8) and 97.4 (5)°, respectively.

In the title compound, two $[H_{2.5}PtW_6O_{24}]^{5.5-}$ polyanions form a dimer, $[H_5(PtW_6O_{24})_2]^{11-}$, via five strong hydrogen bonds (Fig. 2). The H atom which is involved in the $O1\cdots O1(1-x, 1-y, -z)$ inter-polyanion hydrogen bonding seems to show positional disorder as is the case in the $[H_{3.5}PtMo_6O_{24}]^{4.5-}$ and $[H_{4.5}PtMo_6O_{24}]^{3.5-}$ polyanions (Lee & Sasaki, 1994). The form of dimerization is similar in the $[H_3PtW_6O_{24}]^{5-}$ polyanion (Lee, 2002). These results led us to conclude that atoms O1, O3, and O5 are protonated. Stoichiometry requires, therefore, an average of 2.5 protons for charge compensation.

Fig. 3 shows the three-dimensional network of the structure. Atom Na5 is located on an inversion centre. All Na atoms are six-coordinated by the O atoms of the polyanion and water molecules, and they deviate from the geometry of a regular octahedron. In particular, the [Na4O₆] octahedron is considerably distorted because of an exceptionally long Na4-O32 distance. The dimerized $[H_{2.5}PtW_6O_{24}]^{5.5-}$ polyanion is enclosed by [NaO₆] cluster rings. The octahedra $[Na1O_6] \cdots [Na2O_6], [Na2O_6] \cdots [Na3O_6], and [Na6O_6] \cdots$ [Na6O₆] (symmetry operator for the last Na atom: 1 - x, (2 - y, -z) are connected by edge-sharing and the octahedra $[Na4O_6] \cdots [Na5O_6], [Na5O_6] \cdots [Na6O_6], and [Na1O_6] \cdots$ $[Na6O_6]$ (symmetry operator for the last Na atom: x, y - 1, z) are connected by corner-sharing. The Na3···Na4 distance is shorter than other Na ··· Na distances because the O atoms O32, O34 and O35 of the corresponding $[Na3O_6]$ and $[Na4O_6]$ octahedra share a common face.

It is worth noting that atom O41 does not show any interaction with the metal atoms, and that it is bonded to other O atoms only by hydrogen bonds. Donor-acceptor distances for possible hydrogen bonding are less than 3.1 Å in (I), as listed in Table 2.

Experimental

Crystals of the title compound were prepared as described in a previous report, by the reaction of Na_2WO_4 ·2H₂O and $Na_2[Pt(OH)_6]$ at about pH 4.7 (Lee *et al.*, 1983). The crystal used for data collection was coated with epoxy resin.

Crystal data

$Na_{5.5}[H_{2.5}PtW_6O_{24}](H_2O)_{17}]$	Z = 2
$M_r = 2117.43$	$D_x = 3.785 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 10.736 (2) Å	Cell parameters from 30
b = 12.803 (3) Å	reflections
c = 14.877 (3) Å	$\theta = 9.5 - 10.5^{\circ}$
$\alpha = 105.50(3)^{\circ}$	$\mu = 22.43 \text{ mm}^{-1}$
$\beta = 105.13 (3)^{\circ}$	T = 298 (2) K
$\gamma = 97.43 \ (3)^{\circ}$	Block, pale yellow
$V = 1858.1 (9) \text{ Å}^3$	$0.30 \times 0.25 \times 0.24$ mm
Data collection	
Stoe Stadi-4 diffractometer	$\theta_{\rm max} = 27.5^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 13$
Absorption correction: numerical	$k = -16 \rightarrow 16$
(X-SHAPE; Stoe & Cie, 1996)	$l = -19 \rightarrow 18$
$T_{\min} = 0.005, T_{\max} = 0.010$	3 standard reflections
8526 measured reflections	frequency: 60 min
8526 independent reflections	intensity decay: 3.5%
7210 reflections with $L > 2\sigma(I)$	· ·

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.042P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 22.4365 <i>P</i>]
$vR(F^2) = 0.098$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{\rm max} = 0.001$
3526 reflections	$\Delta \rho_{\rm max} = 1.89 \text{ e} \text{ Å}^{-3}$
485 parameters	$\Delta \rho_{\rm min} = -2.38 \text{ e} \text{ Å}^{-3}$
H atoms not included	Extinction correction: SHELXL97
	Extinction coefficient: 0.00196 (5)

Table 1

Selected	geometric	parameters	(A,	°).
----------	-----------	------------	-----	-----

$Pt \cdot \cdot \cdot W1$	3.264 (1)	W6-O6	2.174 (7)
$Pt \cdot \cdot \cdot W2$	3.2939 (9)	W6-O11	1.942 (7)
Pt···W3	3.305 (1)	W6-O12	1.939 (8)
$Pt \cdot \cdot \cdot W4$	3.328 (2)	W6-O23	1.729 (8)
$Pt \cdot \cdot \cdot W5$	3,3366 (9)	W6-O24	1.749 (8)
Pt···W6	3.329(1)	Na1···Na2	3.420 (8)
W1W2	3 336 (1)	Na1···Na6 ⁱ	4 355 (9)
W1W6	3239(2)	Na2Na3	3 412 (7)
W2W3	3.234(1)	Na3Na4	3 328 (9)
W3W4	3.231(1) 3.384(2)	Na4Na5	3 931 (8)
W4W5	3.304(2) 3.239(1)	Na5Na6	4 460 (6)
W5W6	3.257(1) 3.387(2)	Na6Na6 ⁱⁱ	3.50(1)
Pt 01	2.026(7)	Nat O23	2.30(1)
Pt = 02	2.020(7)	Na1 025	2.30(1)
$Pt = O^2$	1.907(7)	Na1 - 025	2.33(1)
Pl = 0.5	2.025 (7)	Na1-020	2.39(1)
PI-04	2.009 (6)	Na1 = O27	2.46 (2)
Pt=05	2.010 (7)	Na1-028	2.48(1)
Pt = Ob	1.988 (7)	Na1-029	2.38 (1)
W1-01	2.259 (7)	Na2-022	2.31 (1)
W1-O6	2.143 (7)	Na2-028	2.39 (1)
W1-07	1.943 (7)	Na2-O29	2.48 (1)
W1-O12	1.946 (8)	Na2-O30	2.37 (1)
W1-O13	1.745 (7)	Na2-O31	2.43 (1)
W1-O14	1.755 (8)	Na2-O32	2.47 (1)
W2-O1	2.311 (7)	Na3-O20 ^m	2.372 (9)
W2-O2	2.154 (7)	Na3-O31	2.47 (1)
W2-O7	1.931 (7)	Na3-O32	2.38 (1)
W2-O8	1.959 (7)	Na3-O33	2.44 (1)
W2-O15	1.763 (7)	Na3-O35	2.47 (1)
W2-O16	1.725 (8)	Na3-O34	2.48(1)
W3-O2	2.185 (7)	Na4-O17 ^{iv}	2.32(1)
W3-O3	2.293 (7)	Na4-O32	2.86(1)
W3-O8	1.933 (7)	Na4-O34	2.45 (2)
W3-O9	1.952 (7)	Na4-O35	2.33 (1)
W3-O17	1.733 (8)	Na4-O36	2.66 (2)
W3-018	1.751 (8)	Na4-037	2.30(2)
W4-03	2 325 (7)	$Na5-O37^{v}$	2 39 (1)
W4-04	2.145(7)	Na5-037	2.39(1)
W4-09	1.921(7)	Na5-038	2.65(1) 2.45(2)
W4-010	1 956 (7)	$Na5-O38^{v}$	2.45(2)
W4-019	1 769 (8)	$Na5-O39^{v}$	2.63(1)
W4_020	1.707 (0)	Na5_039	2.63(1)
W5-04	2140(7)	$N_{26} = 0.0000000000000000000000000000000000$	2.03(1) 2 348 (9)
W5 05	2.140(7)	$N_{a6} = O18^{ii}$	2.340(9) 2.42(1)
W5_010	1.965 (7)	Na6 019	2.43(1) 2.41(1)
W5_011	1.905(7) 1.028(7)	Na6 $O25^{vi}$	2.41(1) 2.40(1)
W5_021	1.926 (7)	Na0 = O23 Na6 = O40	2.40(1)
w5-021	1.726 (8)	Na0 = 040	2.44(2)
W3-022	1.755 (6)	Na0-059	2.50(1)
wo-05	2.330(7)		
W1-O1-W2	93.8 (2)	W2-O7-W1	118.9 (3)
W2-O2-W3	96.4 (3)	W3-O8-W2	112.4 (4)
W3-O3-W4	94.3 (3)	W4-O9-W3	121.8 (4)
W5-O4-W4	98.2 (3)	W4-O10-W5	111.4 (3)
W6-O5-W5	92.3 (2)	W5-O11-W6	122.2 (4)
W1-O6-W6	97.2 (3)	W6-O12-W1	113.0 (4)

Symmetry codes: (i) x, y - 1, z; (ii) 1 - x, 2 - y, -z; (iii) 2 - x, 2 - y, 1 - z; (iv) 1 + x, y, z; (v) 2 - x, 2 - y, -z; (vi) x, 1 + y, z.

Figure 3

The three-dimensional network of (I) represented as a polyhedral model. The unit cell is outlined. [Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z; (iv) x - 1, y - 1, z; (v) x, y - 1, z; (vi) 2 - x, 1 - y, -z; (vii) 2 - x, 2 - y, -z; (viii) 1 - x, 1 - y, -z.]

Table 2Hydrogen-bonding geometry (Å).

$01 \cdots 01^i$	2.60(1)	$O30 \cdots O41^{iv}$	2.83 (1)
$O3 \cdot \cdot \cdot O14^i$	2.56 (1)	$O31 \cdots O24^{iii}$	2.90 (1)
$O5 \cdot \cdot \cdot O15^i$	2.60(1)	O31···O33	3.08 (1)
$O25 \cdots O8^{i}$	2.82 (1)	$O32 \cdot \cdot \cdot O2^{iv}$	2.80 (1)
O25···O23	3.04 (2)	O32···O36	2.81 (2)
$O25 \cdot \cdot \cdot O38^{ii}$	2.90 (2)	$O33 \cdot \cdot \cdot O4^{iv}$	2.82 (1)
$O26 \cdot \cdot \cdot O19^{ii}$	2.90(1)	$O33 \cdots O34^{v}$	2.80 (2)
O26···O21 ⁱⁱⁱ	2.84 (1)	$O34 \cdot \cdot \cdot O9^{iv}$	2.82 (1)
O26···O27	3.05 (2)	O34···O35	3.03 (1)
O26···O31 ⁱⁱⁱ	2.80(1)	O35···O10	2.81 (1)
$O27 \cdot \cdot \cdot O13^{iv}$	2.68 (2)	$O35 \cdot \cdot \cdot O20^{vi}$	3.06 (1)
$O27 \cdot \cdot \cdot O37^{ii}$	2.80(2)	$O35 \cdot \cdot \cdot O21^{vi}$	2.91 (1)
$O27 \cdots O41^{iv}$	2.76 (2)	O36···O10	2.83 (1)
$O28 \cdot \cdot \cdot O7^{iv}$	2.83 (1)	$O36 \cdot \cdot \cdot O15^{i}$	3.01 (1)
$O28 \cdot \cdot \cdot O15^{i}$	2.96 (1)	$O36 \cdot \cdot \cdot O16^{iv}$	2.98 (1)
O29···O11 ⁱⁱⁱ	3.04 (1)	O37···O19	3.06 (2)
$O29 \cdot \cdot \cdot O29^{iii}$	2.95 (2)	O38···O16 ^{vii}	3.07 (2)
$O30 \cdot \cdot \cdot O6^{iv}$	2.73 (1)	$O38 \cdot \cdot \cdot O17^{vii}$	3.00 (2)
O30···O31	3.05 (1)	$O39 \cdot \cdot \cdot O14^i$	3.03 (1)
O30···O33	2.93 (1)	$O40 \cdots O12^{viii}$	2.98 (2)

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) x, y - 1, z; (iii) 2 - x, 1 - y, 1 - z; (iv) 1 + x, y, z; (v) 3 - x, 2 - y, 1 - z; (vi) 2 - x, 2 - y, 1 - z; (vii) 1 - x, 2 - y, -z; (viii) x, 1 + y, z.

H atoms were not located. The highest peak in the difference map is 0.76 Å from W6 and the deepest hole is 0.90 Å from Pt.

Data collection: *Stadi*4 (Stoe & Coe, 1996); cell refinement: *Stadi*4; data reduction: *X-RED*32 (Stoe, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-*3 (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL*97.

This work was supported by Pukyong National University Research Fund in 2003.

References

Anderson, J. S. (1937). Nature (London), 150, 850.

Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR, Bonn, Germany.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Lee, U. (1994). Acta Cryst. C50, 1657–1659.
- Lee, U. (2002). Acta Cryst. E58, i130-i132.
- Lee, U., Ichida, H., Kobayashi, A. & Sasaki, Y. (1984). Acta Cryst. C40, 5-7.
- Lee, U. & Joo, H. C. (2000). Acta Cryst. C56, e311-e312.
- Lee, U., Kobayashi, A. & Sasaki, Y. (1983). Acta Cryst. C39, 817-819.
- Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1996). *Stadi*4, *X-RED*32 and *X-SHAPE*. Stoe & Cie, Darmstadt, Germany.
- Tsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36-40.