Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Uk Lee* and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{W}-\mathrm{O})=0.008 \AA$
H -atom completeness 0%
Disorder in main residue
R factor $=0.039$
$w R$ factor $=0.098$
Data-to-parameter ratio $=17.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

A novel protonated hexatungstoplatinate(IV), $\mathrm{Na}_{5.5}\left[\mathrm{H}_{2.5} \mathrm{PtW}_{6} \mathrm{O}_{24}\right] \cdot 1 \mathbf{7 H}_{2} \mathrm{O}$

The novel protonated hemiundecasodium hemipentahydrogen hexatungstoplatinate(IV) heptadecahydrate, $\mathrm{Na}_{5.5}\left[\mathrm{H}_{2.5} \mathrm{PtW}_{6} \mathrm{O}_{24}\right] \cdot 17 \mathrm{H}_{2} \mathrm{O}$, crystallizes in the triclinic system in space group $P \overline{1}$. The protonated O atoms were identified by considering three factors: inter-polyanion hydrogen bonds, elongation of $\mathrm{W}-\mathrm{O}(\mathrm{H})$ bond distances, and bond angles of $\mathrm{W}-\mathrm{O}(\mathrm{H})-\mathrm{W}$. The $\left[\mathrm{H}_{2.5}\left(\mathrm{PtW}_{6} \mathrm{O}_{24}\right)\right]^{5.5-}$ polyanion has no inversion symmetry, and it forms a dimer, viz. $\left[\mathrm{H}_{5}\left(\mathrm{PtW}_{6} \mathrm{O}_{24}\right)_{2}\right]^{11-}$, via five strong hydrogen bonds.

Comment

Gradual protonation of the polyanion in Anderson-type heteropolyoxometalates (Anderson, 1937; Tsigdinos, 1978) has been found only in hexamolybdo- (Lee, 1994; Lee \& Sasaki, 1994; Lee \& Joo, 2000) and hexatungstoplatinate(IV) (Lee et al., 1983; Lee, 2002) systems, when the general formula is $\left[\operatorname{Pt} M_{6} \mathrm{O}_{24}\right]^{8-}$ (where $M=$ Mo or W). The preparation of novel protonated hexatungstoplatinates is chemically interesting, and is important for investigating heteropolyoxometalate systems. We had attempted to confirm such protonation in the $\left[\mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{8-}$ system. As a result, one type of hexatungstoplatinate(IV), viz. $\left[\mathrm{H}_{3} \mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{5-}$ (Lee et al., 1983; Lee, 2002), was obtained previously. We report here the structure of the title compound, (I), which contains a novel

Figure 1
A view of the structure with displacement ellipsoids drawn at the 30% probability level, and showing the full coordination of the cations. H atoms are not shown. [Symmetry codes: (i) $2-x, 2-y, 1-z$; (ii) $1+x$, y, z; (iii) $2-x, 2-y,-z$; (iv) $1-x, 2-y,-z$; (v) $x, 1+y, z$.]

Received 19 January 2004 Accepted 28 January 2004 Online 7 February 2004

Figure 2
Inter-polyanion hydrogen bonds shown as a polyhedral model. [Symmetry code: (i) $1-x, 1-y,-z$.]
protonated hexatungstoplatinate anion, viz. $\quad\left[\mathrm{H}_{2.5} \mathrm{Pt}-\right.$ $\left.\mathrm{W}_{6} \mathrm{O}_{24}\right]^{5.5-}$.

Fig. 1 shows the structure of (I) and the atom-labelling scheme of the polyanion. The polyanion consists of six independent $\left[\mathrm{WO}_{6}\right]$ and one $\left[\mathrm{PtO}_{6}\right]$ octahedra, sharing edges, and the polyanion has C_{1} (1) symmetry. The O atoms were classified in the same way as previously (Lee et al., 1984), viz. Oc (O1-O6), $\mathrm{O} b(\mathrm{O} 7-\mathrm{O} 12), \mathrm{O} t(\mathrm{O} 13-\mathrm{O} 24)$, and $\mathrm{O} w(\mathrm{O} 25-\mathrm{O} 41)$. The protonated O atoms, $\mathrm{O}(\mathrm{H})$ in the polyanion, were also identified in the same way as reported previously (Lee, 2002).

The protonation of the $\mathrm{O} c$ atoms causes an increase in the $\mathrm{W}-\mathrm{O} c(\mathrm{H})$ bond lengths, a decrease in the $\mathrm{W}-\mathrm{O} c(\mathrm{H})-\mathrm{W}$ bond angles, and an increase in the $\mathrm{W}-\mathrm{O} b-\mathrm{W}$ bond angles. The elongation of the $\mathrm{W}-\mathrm{O} c n(\mathrm{H})(n=1,3$ and 5$)$ bond lengths is about $0.16 \AA$ compared with the non-protonated O atoms, as shown in Table 1. Along with the degree of protonation for different $\left[\mathrm{H}_{n} \mathrm{PtMo}_{6} \mathrm{O}_{24}\right]^{(8-n)-}$ anions, the corresponding $\mathrm{Mo}-\mathrm{Oc}(\mathrm{H})$ bonds are elongated, whereas the $\mathrm{Pt}-$ $\mathrm{O} c(\mathrm{H})$ distances do not vary considerably in any protonated hexamolybdo- or hexatungstoplatinate(IV). A distinct bondlength elongation was not found for the $\mathrm{W}-\mathrm{O} b$ bonds. The $\mathrm{W} \cdots \mathrm{W}$ distance is also affected by the elongation of the W $\mathrm{O} c(\mathrm{H})$ bond distance. As a result, the distances $\mathrm{W} 1 \cdots \mathrm{~W} 2$, W3 \cdots W4, and W5 \cdots W6, with a mean value of $3.369 \AA$, are longer than the W1 ..W6, W2 $\cdots \mathrm{W} 3$, and W4 \cdots W5 distances, with a mean value of $3.237 \AA$.

The bond angles $\mathrm{W}-\mathrm{Ocn}-\mathrm{W}(n=1,3,5$; mean value 93.5°) are smaller than those of the unprotonated $\mathrm{W}-\mathrm{Ocn}-$ W groups $\left(n=2,4,6\right.$; mean value $\left.97.3^{\circ}\right)$. The $\mathrm{W}-\mathrm{O} b-\mathrm{W}$ angles, which are a counterpart of $\mathrm{Oc}(\mathrm{H})$, i.e. $\mathrm{W}-\mathrm{O} b n-\mathrm{W}(n$ $=7,9,11$; mean value 121.0°), are larger than the $\mathrm{W}-\mathrm{Obn}-$ W angles $\left(n=8,10,12\right.$; mean value $\left.112.3^{\circ}\right)$. For comparison, in the unprotonated $\left[\mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{8-}$ polyanion (Lee et al., 1984), the bond lengths of $\mathrm{W}-\mathrm{O} b$ and $\mathrm{W}-\mathrm{O} c$ are 1.97 (2) and 2.16 (2) \AA, and the bond angles of $\mathrm{W}-\mathrm{O} b-\mathrm{W}$ and $\mathrm{W}-\mathrm{O} c-$ W are 110.8 (8) and $97.4(5)^{\circ}$, respectively.

In the title compound, two $\left[\mathrm{H}_{2.5} \mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{5.5-}$ polyanions form a dimer, $\left[\mathrm{H}_{5}\left(\mathrm{PtW}_{6} \mathrm{O}_{24}\right)_{2}\right]^{11-}$, via five strong hydrogen bonds (Fig. 2). The H atom which is involved in the $\mathrm{O} 1 \cdots \mathrm{O} 1(1-x, 1-y,-z)$ inter-polyanion hydrogen bonding seems to show positional disorder as is the case in the $\left[\mathrm{H}_{3.5} \mathrm{PtMo}_{6} \mathrm{O}_{24}\right]^{4.5-}$ and $\left[\mathrm{H}_{4.5} \mathrm{PtMo}_{6} \mathrm{O}_{24}\right]^{3.5-}$ polyanions (Lee \& Sasaki, 1994). The form of dimerization is similar in the $\left[\mathrm{H}_{3} \mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{5-}$ polyanion (Lee, 2002). These results led us to conclude that atoms O1, O3, and O5 are protonated. Stoichiometry requires, therefore, an average of 2.5 protons for charge compensation.

Fig. 3 shows the three-dimensional network of the structure. Atom Na 5 is located on an inversion centre. All Na atoms are six-coordinated by the O atoms of the polyanion and water molecules, and they deviate from the geometry of a regular octahedron. In particular, the $\left[\mathrm{Na}_{4} \mathrm{O}_{6}\right.$] octahedron is considerably distorted because of an exceptionally long Na4-O32 distance. The dimerized $\left[\mathrm{H}_{2.5} \mathrm{PtW}_{6} \mathrm{O}_{24}\right]^{5.5-}$ polyanion is enclosed by $\left[\mathrm{NaO}_{6}\right]$ cluster rings. The octahedra $\left[\mathrm{Na}_{6}\right] \cdots\left[\mathrm{Na}_{2} \mathrm{O}_{6}\right], \quad\left[\mathrm{Na}_{2} \mathrm{O}_{6}\right] \cdots\left[\mathrm{Na}_{6} \mathrm{O}_{6}\right]$, and $\left[\mathrm{Na}_{6} \mathrm{O}_{6}\right] \cdots$ $\left[\mathrm{Na}_{6} \mathrm{O}_{6}\right]$ (symmetry operator for the last Na atom: $1-x$, $2-y,-z$) are connected by edge-sharing and the octahedra $\left[\mathrm{Na}_{4} \mathrm{O}_{6}\right] \cdots\left[\mathrm{Na}_{5} \mathrm{O}_{6}\right], \quad\left[\mathrm{Na}_{5} \mathrm{O}_{6}\right] \cdots\left[\mathrm{Na}_{6}\right]$, and $\left[\mathrm{Na}_{6} \mathrm{O}_{6}\right] \cdots$ $\left[\mathrm{Na}^{2} \mathrm{O}_{6}\right]$ (symmetry operator for the last Na atom: $x, y-1, z$) are connected by corner-sharing. The Na3 $\cdots \mathrm{Na} 4$ distance is shorter than other $\mathrm{Na} \cdots \mathrm{Na}$ distances because the O atoms O32, O34 and O35 of the corresponding $\left[\mathrm{Na}_{3}\right]$ and $\left[\mathrm{Na} 4 \mathrm{O}_{6}\right]$ octahedra share a common face.

It is worth noting that atom O41 does not show any interaction with the metal atoms, and that it is bonded to other O atoms only by hydrogen bonds. Donor-acceptor distances for possible hydrogen bonding are less than $3.1 \AA$ in (I), as listed in Table 2.

Experimental

Crystals of the title compound were prepared as described in a previous report, by the reaction of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Pt}(\mathrm{OH})_{6}\right]$ at about pH 4.7 (Lee et al., 1983). The crystal used for data collection was coated with epoxy resin.

Crystal data

$\left.\mathrm{Na}_{5.5}\left[\mathrm{H}_{2.5} \mathrm{PtW}_{6} \mathrm{O}_{24}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{17}\right]$
$M_{r}=2117.43$
Triclinic, $P \overline{1}$
$a=10.736$ (2) £
$b=12.803(3) \AA$
$c=14.877$ (3) \AA
$\alpha=105.50(3)^{\circ}$
$\beta=105.13(3)^{\circ}$
$\gamma=97.43$ (3) ${ }^{\circ}$
$V=1858.1(9) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=3.785 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 30 \\
& \quad \text { reflections } \\
& \theta=9.5-10.5^{\circ} \\
& \mu=22.43 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, pale yellow } \\
& 0.30 \times 0.25 \times 0.24 \mathrm{~mm} \\
& \\
& \theta_{\text {max }}=27.5^{\circ} \\
& h=0 \rightarrow 13 \\
& k=-16 \rightarrow 16 \\
& l=-19 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 3.5 \%
\end{aligned}
$$

Data collection

Stoe Stadi-4 diffractometer $\omega / 2 \theta$ scans Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1996)
$T_{\text {min }}=0.005, T_{\text {max }}=0.010$ 8526 measured reflections
8526 independent reflections 7210 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.098$
$S=1.13$
8526 reflections
485 parameters
H atoms not included
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.042 P)^{2}\right.$
$+22.4365 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.89 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-2.38$ e \AA^{-3}
Extinction correction: SHELXL97 Extinction coefficient: 0.00196 (5)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Pt...W1	3.264 (1)	W6-O6	2.174 (7)
Pt \cdots W2	3.2939 (9)	W6-O11	1.942 (7)
Pt...W3	3.305 (1)	W6-O12	1.939 (8)
Pt...W4	3.328 (2)	W6-O23	1.729 (8)
Pt...W5	3.3366 (9)	W6-O24	1.749 (8)
Pt...W6	3.329 (1)	$\mathrm{Na} 1 \cdots \mathrm{Na} 2$	3.420 (8)
W1...W2	3.336 (1)	Na1 \cdots Na6 ${ }^{\text {i }}$	4.355 (9)
W1...W6	3.239 (2)	$\mathrm{Na} 2 \cdots \mathrm{Na} 3$	3.412 (7)
W2...W3	3.234 (1)	Na3 \cdots Na4	3.328 (9)
W3...W4	3.384 (2)	Na4 - . Na5	3.931 (8)
W4...W5	3.239 (1)	Na5 - Na6	4.460 (6)
W5...W6	3.387 (2)	Na6 \cdots Na $6^{\text {ii }}$	3.50 (1)
$\mathrm{Pt}-\mathrm{O} 1$	2.026 (7)	$\mathrm{Na} 1-\mathrm{O} 23$	2.30 (1)
$\mathrm{Pt}-\mathrm{O} 2$	1.987 (7)	Na1-O25	2.33 (1)
$\mathrm{Pt}-\mathrm{O} 3$	2.025 (7)	$\mathrm{Na} 1-\mathrm{O} 26$	2.39 (1)
$\mathrm{Pt}-\mathrm{O} 4$	2.009 (6)	Na1-O27	2.46 (2)
$\mathrm{Pt}-\mathrm{O} 5$	2.010 (7)	Na1-O28	2.48 (1)
Pt -O6	1.988 (7)	Na1-O29	2.38 (1)
W1-O1	2.259 (7)	$\mathrm{Na} 2-\mathrm{O} 22$	2.31 (1)
W1-O6	2.143 (7)	$\mathrm{Na} 2-\mathrm{O} 28$	2.39 (1)
W1-O7	1.943 (7)	Na2-O29	2.48 (1)
W1-O12	1.946 (8)	Na2-O30	2.37 (1)
W1-O13	1.745 (7)	Na2-O31	2.43 (1)
W1-O14	1.755 (8)	Na2-O32	2.47 (1)
W2-O1	2.311 (7)	$\mathrm{Na} 3-\mathrm{O} 20^{\text {iii }}$	2.372 (9)
W2-O2	2.154 (7)	Na3-O31	2.47 (1)
W2-O7	1.931 (7)	Na3-O32	2.38 (1)
W2-O8	1.959 (7)	Na3-O33	2.44 (1)
W2-O15	1.763 (7)	Na3-O35	2.47 (1)
W2-O16	1.725 (8)	Na3-O34	2.48 (1)
W3-O2	2.185 (7)	Na4-O17 ${ }^{\text {iv }}$	2.32 (1)
W3-O3	2.293 (7)	Na4-O32	2.86 (1)
W3-O8	1.933 (7)	Na4-O34	2.45 (2)
W3-O9	1.952 (7)	Na4-O35	2.33 (1)
W3-O17	1.733 (8)	Na4-O36	2.66 (2)
W3-O18	1.751 (8)	Na4-O37	2.30 (2)
W4-O3	2.325 (7)	Na5-O37 ${ }^{\text {V }}$	2.39 (1)
W4-O4	2.145 (7)	Na5-O37	2.39 (1)
W4-O9	1.921 (7)	Na5-O38	2.45 (2)
W4-O10	1.956 (7)	Na5-O38 ${ }^{\text {v }}$	2.45 (2)
W4-O19	1.769 (8)	Na5-O39 ${ }^{\text {v }}$	2.63 (1)
W4-O20	1.717 (7)	Na5-O39	2.63 (1)
W5-O4	2.140 (7)	Na6-O18	2.348 (9)
W5-O5	2.368 (7)	Na6-O18 ${ }^{\text {ii }}$	2.43 (1)
W5-O10	1.965 (7)	Na6-O19	2.41 (1)
W5-O11	1.928 (7)	Na6-O25 ${ }^{\text {vi }}$	2.40 (1)
W5-O21	1.726 (8)	Na6-O40	2.44 (2)
W5-O22	1.735 (8)	Na6-O39	2.50 (1)
W6-O5	2.330 (7)		
W1-O1-W2	93.8 (2)	W2-O7-W1	118.9 (3)
W2-O2-W3	96.4 (3)	W3-O8-W2	112.4 (4)
W3-O3-W4	94.3 (3)	W4-O9-W3	121.8 (4)
W5-O4-W4	98.2 (3)	W4-O10-W5	111.4 (3)
W6-O5-W5	92.3 (2)	W5-O11-W6	122.2 (4)
W1-O6-W6	97.2 (3)	W6-O12-W1	113.0 (4)

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, 2-y,-z$; (iii) $2-x, 2-y, 1-z$; (iv) $1+x, y, z$; (v) $2-x, 2-y,-z$; (vi) $x, 1+y, z$.

The three-dimensional network of (I) represented as a polyhedral model. The unit cell is outlined. [Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $x-1$, y, z; (iii) $x-1, y-1, z$; (iv) $x-1, y-1, z$; (v) $x, y-1, z$; (vi) $2-x$, $1-y,-z$; (vii) $2-x, 2-y,-z$; (viii) $1-x, 1-y,-z$.]

Table 2
Hydrogen-bonding geometry (\AA).

$\mathrm{O} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	2.60 (1)	O30 . . ${ }^{\text {4 }} 1^{\text {iv }}$	2.83 (1)
O3. . O14 ${ }^{\text {i }}$	2.56 (1)	$\mathrm{O} 31 \cdots \mathrm{O} 24^{\text {iii }}$	2.90 (1)
O5...O15 ${ }^{\text {i }}$	2.60 (1)	O31 . O33	3.08 (1)
O25 . . $\mathrm{O}^{\text {i }}$	2.82 (1)	$\mathrm{O} 32 \cdots \mathrm{O} 2^{\text {iv }}$	2.80 (1)
O25...O23	3.04 (2)	O32 . O336	2.81 (2)
$\mathrm{O} 25 \cdots \mathrm{O} 38^{\text {ii }}$	2.90 (2)	O33 . O $4^{\text {iv }}$	2.82 (1)
O26...O19 ${ }^{\text {ii }}$	2.90 (1)	O33 . ${ }^{\text {O }} 34{ }^{\text {v }}$	2.80 (2)
$\mathrm{O} 26 \cdots \mathrm{O} 2{ }^{\text {iii }}$	2.84 (1)	O34...O9 ${ }^{\text {iv }}$	2.82 (1)
O26 . ${ }^{\text {O27 }}$	3.05 (2)	O34..O35	3.03 (1)
O26...O31 ${ }^{\text {iii }}$	2.80 (1)	O35..O10	2.81 (1)
$\mathrm{O} 27 \ldots \mathrm{O} 3^{\text {iv }}$	2.68 (2)	$\mathrm{O} 35 \cdots \mathrm{O} 2{ }^{\text {vi }}$	3.06 (1)
O27...O37 ${ }^{\text {ii }}$	2.80 (2)	$\mathrm{O} 35 \cdots \mathrm{O} 2{ }^{\text {vi }}$	2.91 (1)
O27...O41 ${ }^{\text {iv }}$	2.76 (2)	O36 . O10	2.83 (1)
$\mathrm{O} 28 \cdots \mathrm{O} 7^{\text {iv }}$	2.83 (1)	O36 \cdots O15 ${ }^{\text {i }}$	3.01 (1)
$\mathrm{O} 28 \cdots \mathrm{O} 15^{\mathrm{i}}$	2.96 (1)	O36...O16 ${ }^{\text {iv }}$	2.98 (1)
O29...O11 ${ }^{\text {iii }}$	3.04 (1)	O37...O19	3.06 (2)
$\mathrm{O} 29 \ldots \mathrm{O} 2 \mathrm{iii}^{\text {ii] }}$	2.95 (2)	O38..O16 ${ }^{\text {vii }}$	3.07 (2)
O30 $\cdots \mathrm{O}^{\text {iv }}$	2.73 (1)	O38..O17 ${ }^{\text {vii }}$	3.00 (2)
O30..O31	3.05 (1)	O39...O14 ${ }^{\text {i }}$	3.03 (1)
O30 . . O33	2.93 (1)	$\mathrm{O} 40 \cdots \mathrm{O} 12{ }^{\text {viii }}$	2.98 (2)

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $x, y-1, z$; (iii) $2-x, 1-y, 1-z$; (iv) $1+x, y, z$; (v) $3-x, 2-y, 1-z$; (vi) $2-x, 2-y, 1-z$; (vii) $1-x, 2-y,-z$; (viii) $x, 1+y, z$.

H atoms were not located. The highest peak in the difference map is $0.76 \AA$ from W6 and the deepest hole is $0.90 \AA$ from Pt.

Data collection: Stadi4 (Stoe \& Coe, 1996); cell refinement: Stadi4; data reduction: X-RED32 (Stoe, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

inorganic papers

This work was supported by Pukyong National University Research Fund in 2003.

References

Anderson, J. S. (1937). Nature (London), 150, 850.
Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lee, U. (1994). Acta Cryst. C50, 1657-1659.
Lee, U. (2002). Acta Cryst. E58, i130-i132.
Lee, U., Ichida, H., Kobayashi, A. \& Sasaki, Y. (1984). Acta Cryst. C40, 5-7. Lee, U. \& Joo, H. C. (2000). Acta Cryst. C56, e311-e312.
Lee, U., Kobayashi, A. \& Sasaki, Y. (1983). Acta Cryst. C39, 817-819.
Lee, U. \& Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). Stadi4, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Tsigdinos, G. A. (1978). Top. Curr. Chem. 76, 36-40.

